Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Sign In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Institutions & Repositories
  • Query NERD by:
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Sign In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Xue Z"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Deep multiple-instance learning for abnormal cell detection in cervical histopathology images
    (2021) Pal A; Xue Z; Desai K; Aina F Banjo A; Adepiti CA; Long LR; Schiffman M; Antani S
    Cervical cancer is a disease of significant concern affecting women's health worldwide. Early detection of and treatment at the precancerous stage can help reduce mortality. High-grade cervical abnormalities and precancer are confirmed using microscopic analysis of cervical histopathology. However, manual analysis of cervical biopsy slides is time-consuming, needs expert pathologists, and suffers from reader variability errors. Prior work in the literature has suggested using automated image analysis algorithms for analyzing cervical histopathology images captured with the whole slide digital scanners (e.g., Aperio, Hamamatsu, etc.). However, whole-slide digital tissue scanners with good optical magnification and acceptable imaging quality are cost-prohibitive and difficult to acquire in low and middle-resource regions. Hence, the development of low-cost imaging systems and automated image analysis algorithms are of critical importance. Motivated by this, we conduct an experimental study to assess the feasibility of developing a low-cost diagnostic system with the H&E stained cervical tissue image analysis algorithm. In our imaging system, the image acquisition is performed by a smartphone affixing it on the top of a commonly available light microscope which magnifies the cervical tissues. The images are not captured in a constant optical magnification, and, unlike whole-slide scanners, our imaging system is unable to record the magnification. The images are mega-pixel images and are labeled based on the presence of abnormal cells. In our dataset, there are total 1331 (train: 846, validation: 116 test: 369) images. We formulate the classification task as a deep multiple instance learning problem and quantitatively evaluate the classification performance of four different types of multiple instance learning algorithms trained with five different architectures designed with varying instance sizes. Finally, we designed a sparse attention-based multiple instance learning framework that can produce a maximum of 84.55% classification accuracy on the test set.
THE NERD SYSTEM

Nigeria Education Repository and Databank (NERD) is the official unified digital platform and a one-stop-shop for the national management, administration, and preservation of education data, records, documents and audio-visual assets as a national reference point for education data consistency - supporting the education sector and library services.

QUICK MENU
  • About NERD
  • Contact and Support
  • Other NERD Services
  • Internal/External Examiner Sign up
  • Student/Lecturer's Sign up
  • Regulatory Agencies
ONGOING ACTION
  • Register Your Institution
  • Training
  • Donate Manuscript
  • Donate Parents' Works
  • Investors
  • Annual Prize and Award
  • Thesis & Dissertation
  • Annual Competition
  • Lecturers' Scholarly Article Prizes
  • Essay Prizes
DIGITAL BANK TOOLS
  • Plagiarism Check
  • NCMVS
  • Publish on NERD
  • Peer Review Publications
  • Futile Hypothesis
  • NERD Receipt
  • InfoGraphics

NERD System Copyright © Federal Ministry of Education.

  • Cookie settings  | 
  • Terms and Conditions  |  
  • End Users Agreement  | 
  • Privacy Policy